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KINETICS OF THE NEUTRALIZATION OF STATIC
ELECTRICITY IN APPARATUS CONTAINING TWO-
PHASE SYSTEMS OF GAS AND SOLID PARTICLES

V. K. Abramyan, N. N. Kastal'skaya,
and G. I. Pichakhechi

UDC 541.182:537.226

The mechanisms of neutralization of static electricity of disperse systems when ions of the
opposite sign are present in the gaseous medium are discussed,

In the design of neutralizers of static electricity for industrial apparatus containing two-phase systems
of gas and solid particles the calculation of the performance of these neutralizers acquires great importance.
The value of this parameter can be determined by analyzing the process of neutralization of the charges of
particles of the product being treated in the presence of ions of the opposite sign in the gas—air medium of
the working volume of the apparatus. Let us consider a charged spherical particle over which a stream of
ions of the opposite sign flows (Fig. 1).

Under these conditions the variation of the charge of a particle is described by the equation

dg/dt = e { jndS. (1)
s
The flux density is defined as [1]

jun = —nkEg-- Dgradn. (2)

The neutralization of the charges of a particle takes place in accordance with Eq. (2) as a single pro-
cess, but to simplify the solution we will consider two mechanisms separately: a) ion motion directed toward
the surface of the particle due to the electric field; b) ion motion due to diffusion.

Let us consider the first mechanism. The following forces act on an ion which is near a charged parti-

cle:
Ex= Ee + _Epol + —Ec+ Enﬁ‘ Eeclu- {3)
Let us find the components of these voltages on the vector ds:
D Eezllf—e{-cosezg%cosﬁ. 4)
0

To simplify the calculations we assume that -Ee is the same at different points
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Fig. 1. Flow of ionized air over a particle,

. e—¢
2) Epor = 25,,,.:2_; cos 6, - (5)

3) Ec = g/4ne,R?, where R = r, (1+4-v). (6)

4) Epp at a distance ! from the center of the particle:
1 1
b= dnegry Y (y2— 1)

 where y = I/r,. (7)

The role of the mirror-image force consists in the fact that the particle is struck not only by ions
whose trajectory of motion intersects the particle's surface but also those whose trajectories lie at a certain
distance from it. Thus, the role of this force comes down to a kind of artificial increase in the particle di-
ameter.

As calculations show, this increase reaches 30% for a particle 0.1 um in diameter with Eg = 3.0- 105
V/m, while for a 1-pmparticle it is already negligible. Since in practice the values of Ee¢ and dy are far
larger than the values indicated above, the quantity Ey, can be neglected.

5) Eequ= Pot/k. (8)
Thus, for the projection of the total field strength onto dS we obtain
gNr; ( & — 8 ) o
Ey=—21"2[14+2——")cos0O [4negR2 -+ Voor /k. 9
z 2, | + oL %, -+ q/4neR? + Vpot 9)

If we use Pauthenier's method [2] for an isolated spherical particle, then ¢, is the angle outside which
Ey is equal to zero. Then

gNr, | g -—8& ) ]
= —q/4 2] — 1+2 cos 6 Voot /5. 1
Cos @, gl4ng,R [ 2%, ( + 2 e =+ Vpot (10)
Considering that the space charge is p = ne, and taking grad Ppol = 0, we obtain
%9/0S0t = — kE30 o). (11)

Let us solve this equation for Ee ~ 0, for the case when the particle is at the center of a cylindrical
apparatus with a uniformly distributed charge, for example, Then

Ex= i:L cos @ + g/4me R2,

(12)
cosp, = —7 k
%2 4ng,R2 Vpor
The equation takes the form
q/8Sat = — ( KPI:—tcos Q-+ q/4nsoR2) kne. (i3)
Since dS = 21rrf) sin ¢dy, Eq. (13) takes the form
02g/0@0t = — 2nr§ sin @kne (%‘5 cosp + q/4ns°R2). (14)

In solving Eq. (11) one must allow for the following condition: it follows from Eq. (4) that the angle ¢
varies within different ranges as a function of the relation between E¢ and Eequs for example, 0 < ¢ <7
when '
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e =Zq = Jorit = B%ot Ik,

where gpy is the maximum possible value of the charge on the surface of a spherical particle in accordance
with the electric strength B = 4« eORz of the surrounding medium, and BVpot /% is the conditional charge, the
field of which imparts a velocity V = Vpot to the ion, i.e., owing to the strong electric field the entire surface
is covered with ions. Under these conditions integration of the equation for ¢ in the limits from 0 to 7 gives

dgldt = — 24q/B, (15)

where A = 27[1‘%)1{1’16, and further, integrating over t and considering that the charge is g = qinit at t =0, we
obtain

24,
q(0) = G5, 0%XP (_ B ‘ ) (16)

Equation (7) allows us to calculate the time tgpjt in which the charge qjpjt decreases to the value

derit? 2
€

forit — — 1 — *dinit
kner; 4dneyR*Wpot

(m

As the charge of a particle varies from gerit to zero the angle @ varies within the limits of 0= ¢ =<
arccos ( _q/qcrit)~ Integrating Eq. (15) over t, we obtain

9q/ot = — (9 -+ Feric)® (18)
crit .
We solve Eq. (18) with the initial conditions

t= 07 q= qCI'it’
A 19)
70 = et N1 +-5- 0 = G (

In accordance with Eq. (19), the charge of a particle is neutralized when qjnit = derit- If the initial charge of
a particle is qipit < derits the neutralization takes place in accordance with the equation

q(t)=qcm( i L —1). (20)

\

23. 1+ %nit/qcrit
From Edq. (10) we obtain the total neutralization time:
2B 1

A 1+ Gudq g
Let us consider the solution of Eq. (13) in the presence of an external electric field, i.e., let us consider the

case when a particle does not lie at the center of the apparatus. When the apparatus has a cylmdrlcal shape
[Lapp(h) > dapp], the external field strength is

5

neutr —

(21)

Ee = qN1py/ 28, (22)
When r = Rapp (the particle is at the wall of the apparatus), Ee = Ee max. Then Eq. (5) takes the form
. " 'gNRyy; ge—egg \

32q/090t = — mr? kne sin { — 9%%app (I Fo ="t 0LV _/ d 2 23
P ? 2¢, - & -+ 2g ) cost pot k| cos @t al2emRe (29)

Here, just as in the preceding case, when ¢ = qQgypit the angle is 0= ¢ = 7, while when qgpit = q = 0 itis

0 << ¢ << 4 arecos R —4 S )
4mg,R2 [— ¥ Xapp ( ‘—) cos 0 + Yo /kJ
2e, £y

In this case the value of qgpj¢ 1S

Gorir = 4n&oRWyor [k (— 1 + 4mg,R2C), (24)

where

C= -N—R%P_IL(1+2 8 ) cosh.
2¢, e - 28,
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Fig. 2. Variation of the charge q, C, of a
particle with time t, sec (first neutraliza~
tion mechanism): 1) d = 0.5 10 m, ne =
0.99° 108 m™, Vo1 = 1 m/sec; 2) 0.5
1074 0.99- 1078, and 1, respectively; 3)
0.5:107% 0.99-107%, and 1; 4) 0.5- 105,
0.99°10"% and 1; 5) 0.5-10"% 0.99- 107,
and 1; 6) 0.5-10°%, 0.99- 1074 and 1; 7)
0.5 1073, 0.99-107%, and 5; 8) 0.5- 10™%,
0.99°10° %, and 5; 9) 0.5°10°%, 0.99- 10°¢,
and 5; 10) 0.5° 1073, 0.99- 107, and 5; 11)
0.5°107%, 0.99+10™4, and 5; 12) 0.5+ 1078,
0.99-1074, and 5,

By solving Eq. (5) with allowance for the value of Ep, we obtain an expression for the time during which the

charge of a particle decreases from qinjt = derit t0 zero:
7 In din 25 14 BC
z = —— [ptiot {Cln l+ PR EY: AW

o 24 gem A(1+ BC)? Ferit BVt

B~ Yo I | g (14-80) — 2ot .

(25)

From the calculating equations obtained we constructed curves describing the neutralization of a charged
particle in apparatus containing disperse systems under different modes of operation of the technological in-
stallation and the neutralizer (Fig. 2). ‘

Let us consider the motion of ions under the influence of the electric field of a charged particle. For
simplicity we assume that the electric field and the diffusion act along the same straight line, I the ions are
distributed along the x direction with a gradient dn/dx, then their average diffusional velocity is

The average velocity of ions under the influence of the electric field is Vgy. el = KE, and then their
velocity under the influence of both forces is

D d
Vay = Vav.el + Vav.dif== kE — — == (27)
n dx
For E =const and Vgy = 0 the solution of this equation has the form
n = ny exp RE X = nyexp £ x = nyexpeV/kT. (28)
D o
Equation (28) was obtained with allowance for the fact that at small values of the field strength an ion is
in thermal equilibrium with the air:
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EID = e/k,T. (29)

Equation (29) shows that the ion concentration at a point with a potential V is uniquely determined by the
ratio of the electrostatic (potential) energy to the thermal (kinetic) energy.

The assumption that E = const is fully justified, since we are interested in the variation of the ion con-
centration at a small distance from a particle, where the value of E can be taken as equal to
E= q/4m30r; . (30)
As a consequence of thermal motion, a charge

g = Pou/4. {31}

strikes a unit of particle surface per unit time. We assume that all collisions lead to charge transfer, i.e.,
B = 1. The value of u is determined from the equation

u=V &kTam. (32)
Thus, the change in the charge of a particle due to the thermal motion of ions will be
T % une. (33)
Since dS = 2rr} sinedy,
0%G/0¢dt = —O.Emuer; ngy exp (eg/ 4nsok0rp T) sin g. (34)

Let us solve this equation for ¢. For weakly charged particles (Qjnit = 9crit), considering that ¢ varies from
0 to arccos (—kq/47780Vp0tR2), we obtain

dgldt = — AyexpBig (9/q -+ 1), (35)

where Ay =0.5ruerhng, By =e/4megkyrpT, and qerit = 478)VpotRY/k. Taking q =aggrip, Where 0= o= 1,
we find

1
gt = ~5 (o + 1) AiByt + exp (— Big, 1. (36)

And for strongly charged particles (g = qqypit) the angle is 0= ¢ =< 7
dgldt = — Ayexp Byg. (37)

It is seen from Fig. 3 that the neutralization of small charged particles takes place far slower than that of
large ones. This is explained by the difference in the value of grad p and thereby of the diffusional current at
the surfaces of small and large charged particles, Such a difference can be explained by assuming that in this
case the diffusional current is directed opposite to the neutralization current. Finally,

g) = — 7311— In [24,B,¢ + exp (— Bug, ). (38)
The value of t,pjt, When the charge decreases from gipjt to derits e€quals
e = 5 A‘i 5, (050 (— Bide) — e1p (Bt} (39)
The time in which the charge falls from qgpjt to 0 is
fy = 1 —exp (— BiGy;, V(o + 1) 4By (40)
The total neutralization time is
ot = ferit +to (41)

Curves of the neutralization of the charges of particles of different sizes at different densities of ions
surrounding the particle in accordance with the two mechanisms of neutralization of charged particles dis~
cussed are presented in Figs. 2 and 3. As seen from the figures, the time of neutralization of charged parti-
cles due to the directional motion of ions depends on the density of ions surrounding the particle and does not
depend on the particle diameter. And this time proves to be far longer than the time of neutralization due to
the thermal motion and electrostatic diffusion of ions (Fig. 3).
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Fig. 3. Variation of charge q, C, of a parti-
cle with time t, sec (second neutralization
mechanism):

Curve -3
mumber | Yerip C dp’ m ne, m me, m/sec «
1 0,347.10711 0,49.107¢ 0,1.1074 5 0,99.1072
0,99.10"2
. 0,99.107%
2 0,104.10714 0,49.10"3 0,1.107¢ 1,5 0,99.1071
| 0,99.10~2
0,99.1073
3 0,347.10712 0,49.1073 0,1.1074 5 0,99.1072
0,104.10—12 1,5 0,99.10"2
0,99.1073
4 0,347.10712 0,49.1073 0,99.10712 5 0,99.1071
0,1.10712 1,5 0,99.10-2
0,99.10"3
5 0,347.10714 0,49.107¢ 0,99.10712 5 0,99.1071
0,99.10"2
0,99.1073
6 104.10714 0,49.107¢ 0,99.10712 1,5 0,99.1071
0,99.1072
0,99.10-3
NOTATION

e, charge of a singly charged ion; j, vector of ion flux density; dS, unit vector of particle surface; Ey,
total field strength at particle surface; n, ion concentration near particle surface; D, coefficient of diffusion
of ions; k, mobility of ions; Ee, external field strength; Epol» polarization field strength of particles; Eg,
strength due to Coulomb attractive force; Eyy, mirror-image field strength; Eequ, conditional field strength
equivalent to the directional force acting on an ion due to the flow of a stream of ionized air over the particle;
4, charge of particle; N, particle concentration; rj, coordinate of point where neutralization is being con-
sidered; ¢, angle between external field strength vector and axis of directional ion flux to particle surface;

&, €4, relative permittivities of particle material and air; Tps particle radius; R, distance between an ion and
center of a particle; Vpot, velocity of ion motion; ¢ a, angle outside which Eg is equal to zero; p, ion density;
Tapps distance from center of apparatus to location of particle; n, ion concentration at a sufficiently large
distance from a charged particle; k, Boltzmann constant; T, absolute temperature; V, field potential of a
charged particle; u, average ion velocity; 8, ratio of number of ions held on the surface to total number of
ions colliding with a particle; m, ion mass; t;pi, time in which charge decreases from qinit to depits te
time in which charge decreases from qcrit to 05 tint, total time of neutralization.
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NON-STEADY-STATE SORPTION PROCESSES IN
MICROHETEROGENEOUS DISPERSED SYSTEMS*

A. Vain UDC 541.182

The article formulates and solves the problem of asymptotic rapid mass transfer in micro-
heterogeneous dispersed systems.

It is accepted practice to characterize steady-state transfer of a dissolved active component (AC)
through a motionless layer of a liquid or solid dispersion by the diffusion coefficient D,. This is formally de-
termined as the material coefficient in Fick's first law J = —D«Vep, where cp is the local concentration of
the AC in the dispersed system. However, experiments with some dispersed systems type molecular sieve
[1, 2] or hard polymers [3] show that Fick's second law V- (D,Vep) = Dicp does not always provide an
adequate description of the non-steady-state sorption processes in dispersed systems. An analogous conclu-
sion was reached in the study of non-steady-state heat exchange in dispersed systems [4]. The deviations are
of relaxational nature. We will henceforth characterize such processes by the material parameters of the dis-
persed system, viz., the relaxation time Ag.

Deviations from the predictions of the classical theory and from the actual occurrence of sorption pro-
cesses may be expected in dispersed systems for which the diffusion coefficient of the dispersed phase is
lower than the diffusion coefficient of the continuous phase, but the sorptivity is concentrated in the dispersed
phase. The deviations are particularly great upon sudden or very rapid (compared with Ag) changes in the
concentrations of the diffusing component in the dispersed system. Relaxation phenomena, noted in molecular
sieves and other solid substances with polydispersed internal structure [1], may manifest themselves in
liquid dispersed systems with analogous properties during rapidly occurring processes of mass transfer,
e.g., in electrochemical measurements of the diffusion coefficients [5] or in their determination by methods
of a free jet, wetted wall [6], or in industrial processes of contacting gases with suspensions.

The present work presents the asymptotic description of very rapid concentration processes in dis-
persed systems, i.e., it examines a special, asymptotic case of more general theories [1, 2]. If was found
that such asymptotic models can be formulated independently of the internal geometric structure of the me~
dium which in the models is represented only by the specific volume of the dispersed phase ¢ and its specific
surface ¥. In view of the variety of physical situations, the transport model for different types of dispersed
systems is presented in a more general form on the basis of the concepts of microheterogeneous dispersed
systems.

Microheterogeneous DispersedSystems. They have an internal structure whose microscopic scale is
fairly large compared with the molecular dimensions. Yet it is still small compared with the typical macro-
scopic dimensions of test specimens [7]. Separate microscopically distinguishable details of dispersed sys~
tems may be viewed as homogeneous volumetric phases of a heterogeneous polyphase system. It is expedient
to study the macroscopic behavior of dispersed systems as one entity by methods of the physics of the contin-
uum. A similar dualism of the physics of the microheterogeneous continuum manifests itself particularly
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